Create a header that spans multiple columns. Spanning headers are used to group related columns. Such groupings are a common feature of statistical reports.

spanning_header(
  x,
  from,
  to,
  label = "",
  label_align = "center",
  level = 1,
  n = NULL,
  underline = TRUE
)

Arguments

x

The table object to add spanning headers to.

from

The starting column to span. Spanning columns are defined as range of columns 'from' and 'to'. The columns may be identified by position, or by quoted or unquoted variable names. If you want to pass an R variable, escape the value with double curly braces, i.e. from = {{myvar}}. The from parameter is required.

to

The ending column to span. Spanning columns are defined as range of columns 'from' and 'to'. The columns may be identified by position, or by quoted or unquoted variable names. If you want to pass an R variable, escape the value with double curly braces, i.e. to = {{myvar}}. The to parameter is required.

label

The label to apply to the spanning header.

label_align

The alignment to use for the label. Valid values are "left", "right", "center", and "centre". The default for spanning columns is "center".

level

The level to use for the spanning header. The lowest spanning level is level 1, the next level above is level 2, and so on. By default, the level is set to 1.

n

The population count to use for the "N=" label on the spanning header. The "N=" label will be formatted according to the n_format parameter on the create_table function.

underline

A TRUE or FALSE value indicating whether the spanning header should be underlined. Default is TRUE.

Value

The modified table spec.

Details

A spanning header is a label and underline that spans one or more columns. A spanning header is defined minimally by identifying the column range to be spanned, and a label. A label alignment and "N=" value may also be supplied.

The spanning column range is defined by the from and to parameters. The range identifies a contiguous set of variables on the data. Variables can be identified by position, a quoted variable name, or an unquoted variable name.

See also

Examples

library(reporter)
library(magrittr)

# Create a temporary file
tmp <- file.path(tempdir(), "iris.txt")

# Prepare data
dat <- iris[sample(1:150, 15), c(5, 1, 2, 3, 4)]
dat <- dat[order(dat$Species), ]

# Define table
tbl <- create_table(dat) %>% 
  titles("Table 3.2", "IRIS Sample Report") %>% 
  spanning_header(2, 3, label = "Sepal") %>% 
  spanning_header(4, 5, label = "Petal") %>% 
  column_defaults(2:5, format = "%.1f") %>% 
  define(Species, align = "left", dedupe = TRUE, blank_after = TRUE) %>% 
  define(Sepal.Length, label = "Length") %>% 
  define(Sepal.Width, label = "Width") %>% 
  define(Petal.Length, label = "Length") %>% 
  define(Petal.Width, label = "Width") %>% 
  footnotes("* From Fisher's Iris Dataset")
       
# Define report
rpt <- create_report(tmp, orientation="portrait") %>%
  options_fixed(blank_margins = TRUE) %>% 
  set_margins(top = 1, bottom =1) %>% 
  add_content(tbl, align = "left") 

# Write the report
write_report(rpt)

writeLines(readLines(tmp, encoding = "UTF-8"))

#
#
#
#
#                      Table 3.2
#                  IRIS Sample Report
#
#                       Sepal        Petal
#                   ------------ ------------
#       Species     Length Width Length Width
#       -------------------------------------
#       setosa         5.0   3.0    1.6   0.2
#                      4.6   3.4    1.4   0.3
#                      5.0   3.4    1.6   0.4
#                      5.7   3.8    1.7   0.3
#
#       versicolor     5.7   2.8    4.1   1.3
#                      6.2   2.9    4.3   1.3
#                      7.0   3.2    4.7   1.4
#                      6.6   2.9    4.6   1.3
#
#       virginica      6.2   3.4    5.4   2.3
#                      7.2   3.0    5.8   1.6
#                      6.9   3.1    5.1   2.3
#                      5.6   2.8    4.9   2.0
#                      7.7   2.6    6.9   2.3
#                      6.3   2.8    5.1   1.5
#                      7.7   2.8    6.7   2.0
#
#
#       * From Fisher's Iris Dataset